Comparison of excitatory currents activated by different transmitters on crustacean muscle. I. Acetylcholine-activated channels

نویسندگان

  • C Lingle
  • A Auerbach
چکیده

The properties of acetylcholine-activated excitatory currents on the gm1 muscle of three marine decapod crustaceans, the spiny lobsters Panulirus argus and interruptus, and the crab Cancer borealis, were examined using either noise analysis, analysis of synaptic current decays, or analysis of the voltage dependence of ionophoretically activated cholinergic conductance increases. The apparent mean channel open time (tau n) obtained from noise analysis at -80 mV and 12 degrees C was approximately 13 ms; tau n was prolonged e-fold for about every 100-mV hyperpolarization in membrane potential; tau n was prolonged e-fold for every 10 degrees C decrease in temperature. Gamma, the single-channel conductance, at 12 degrees C was approximately 18 pS and was not affected by voltage; gamma was increased approximately 2.5-fold for every 10 degrees C increase in temperature. Synaptic currents decayed with a single exponential time course, and at -80 mV and 12 degrees C, the time constant of decay of synaptic currents, tau ejc, was approximately 14-15 ms and was prolonged e-fold about every 140-mV hyperpolarization; tau ejc was prolonged about e-fold for every 10 degrees C decrease in temperature. The voltage dependence of the amplitude of steady-state cholinergic currents suggests that the total conductance increase produced by cholinergic agonists is increased with hyperpolarization. Compared with glutamate channels found on similar decapod muscles (see the following article), the acetylcholine channels stay open longer, conduct ions more slowly, and are more sensitive to changes in the membrane potential.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of excitatory currents activated by different transmitters on crustacean muscle. II. Glutamate-activated currents and comparison with acetylcholine currents present on the same muscle

The properties of glutamate-activated excitatory currents on the gm6 muscle from the foregut of the spiny lobsters Panulirus argus and interruptus and the crab Cancer borealis were examined using either noise analysis, analysis of synaptic current decays, or slow iontophoretic currents. The properties of acetylcholine currents activated in nonjunctional regions of the gm6 muscle were also exami...

متن کامل

Comparison of Excitatory Currents Activated by Different Transmitters on Crustacean Muscle

The properties of acetylcholine-activated excitatory currents on the gml muscle of three marine decapod crustaceans, the spiny lobsters Panuhrus argus and interruptus, and the crab Cancer borealis, were examined using either noise analysis, analysis of synaptic current decays, or analysis of the voltage dependence of ionophoretically activated cholinergic conductance increases . The apparent me...

متن کامل

A patch-clamp study of acetylcholine-activated ion channels in Ascaris suum muscle.

Acetylcholine-activated single-channel currents were recorded from cell-attached and inside-out patches of isolated muscle vesicles from Ascaris suum. Acetylcholine (1-10 mumols l-1) activated cation-selective channels of two amplitudes: 40-50 pS and 25-35 pS. Both channels had linear I/V relationships and mean open durations independent of voltage. The larger conductance was analysed in detail...

متن کامل

Regulation of Adenosine-activated GIRK Channels by Gq-coupled Receptors in Mouse Atrial Myocytes.

Adenosine (Ado) is an important mediator of the endogenous defense against ischemia-induced injury in the heart. The action of Ado is mediated by activation of G protein-gated inwardly rectifying K(+) (GIRK) channels. In turn, GIRK channels are inhibited by reducing phosphatidylinositol 4,5-bisphosphate (PIP(2)) through Gq protein-coupled receptors (GqPCRs). We previously found that GIRK channe...

متن کامل

Regulation of ATP-sensitive K(+) channels by protein kinase C in murine colonic myocytes.

We investigated the regulation of ATP-sensitive K(+) (K(ATP)) currents in murine colonic myocytes with patch-clamp techniques. Pinacidil (10(-5) M) activated inward currents in the presence of high external K(+) (90 mM) at a holding potential of -80 mV in dialyzed cells. Glibenclamide (10(-5) M) suppressed pinacidil-activated current. Phorbol 12,13-dibutyrate (PDBu; 2 x 10(-7) M) inhibited pina...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of General Physiology

دوره 81  شماره 

صفحات  -

تاریخ انتشار 1983